Silicon Carbide Power MESFET
نویسندگان
چکیده
منابع مشابه
A novel SiC MESFET with recessed P-Buffer layer
We report, for the first time, a silicon carbide (SiC) based metal semiconductor field effect transistor (MESFET) which has a recessed p-buffer layer into the channel region near the source and a recessed channel into the p-buffer layer region near the drain under the gate. The length and thickness of the channel recess into the p-buffer layer are larger than the pbuffer recess into the channel...
متن کاملA Novel SOI MESFET by Implanted N Layer (INL-SOI) for High Performance Applications
This paper introduces a novel silicon-on-insulator (SOI) metal–semiconductor field-effect transistor (MESFET) with an implanted N layer (INL-SOI MESFET) to improve the DC and radio frequency characteristics. The DC and radio frequency characteristics of the proposed structure are analyzed by the 2-D ATLAS simulator and compared with a conventional SOI MESFET (C-SOI MESFET). The simulated result...
متن کاملCharacteristics of GaAs Power MESFETs with Double Silicon Ion Implantations for Wireless Communication Applications
GaAs power metal-semiconductor field-effect transistors (MESFETs) were fabricated using direct double silicon (Si) ion implantation technology for wireless communication applications. A 150-μm MESFET had a saturation drain current of 238 mA/mm after Si3N4 passivation. A 15-mm MESFET, when measured under a class-AB condition with a biased drain voltage of 3.4 V and a quiescent drain current of 6...
متن کاملEvaluation and Characterization of Silicon MESFETs in Low Dropout Regulators
i ABSTRACT The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change to the process. T...
متن کاملNonlinear optical imaging of defects in cubic silicon carbide epilayers
Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017